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1. Introduction

Metric learning is a set of machine learning problems that aim to construct task-specific
distance metrics from supervised data. The most common metric learning methods seek to
learn a global mapping of the data set and apply the same distance function on the trans-
formed data. In doing so, a mapping that is effective in achieving a specified task may destroy
other underlying information about the data that is not needed to the immediate task, but
may be relevant for subsequent investigation. Structure Preserving Metric Learning (SPML)
aims to learn the data mapping that provides the most accurate measure of similarity, while
retaining the structure of each similar group to allow subsequent exploration of subgroup
features.

2. Related Work

There is a significant amount of existing literature on metric learning, much of which is
chronicled in the survey papers by Kulis (2012) and Bellet et al. (2014). We have specif-
ically reviewed MMC (Xing et al, 2002), NCA(Goldberger et al., 2005), t-SNE (van der
Maaten and Hinton, 2008) and LMNN (Weinberger and Saul, 2009), and are using a modi-
fied implementation of MMC in our SPML algorithm.

3. Structure Preserving Metric Learning

The SPML algorithm is based on a modified version of the existing metric learning MMC
algorithm, with an additional term representing the structural integrity of the subgroups in
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the objective function. Thus, the objective function and constraints are as follows:

min
A

∑
(xi,xj)∈S

||xi − xj||2A −
∑
xc∈C

struct(A1/2xc, k)

s.t.
∑

(xi,xj)∈D

||xi − xj||A ≥ 1,

A ⪰ 0

where struct provides the structural integrity score of the transformed data in class c given
k subclusters.

While there are many existing methods that can identify clusters in unlabeled data, including
Gaussian Mixture Model and Dirichlet Process Mixture Model, the resulting loss function
would not be differentiable if these methods are called. Therefore, we propose Distance
Concentration Score as a definition of struct to provide an approximate representation of
structural integrity when the number of subclusters in each class is known.

Distance Concentration Score

This definition of struct takes the transformed data and the known number of subclusters in
each class, computes a distance matrix for all data points, and returns a structural integrity
score based on the how close the average pairwise distance is to the optimal average pairwise
distance. The optimal average pairwise distance assumes that the data points are divided
evenly among the given number of subclusters, which are separated evenly among themselves.

Let A1/2xc be a d× n matrix representing the transformed data in class c, k be the number
of subclusters in the class, and D be the distance matrix among all data points in the class.
The struct score is defined as follows:

struct(A1/2xc, k) = exp

(
−(NormDist−OptDist)2

σ2

)

where NormDist =

∑n
i,j

√
1
µ
·Di,j

n2
,

µ =

∑n
i,j Di,j

n2
,

Di,j = ||xi − xj||A =
√

(xi − xj)TA(xi − xj) ,

OptDist =

√
k − 1

k
,

σ =

√
k

k−1
−
√

n
n−1
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This struct definition is based on the observation that if all clusters are divided and sepa-
rated evenly, then there is an optimal average pairwise distance such that distances among
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data points within the same clusters are minimized and distances among data points from
different clusters are maximized. To calculate the normalized average pairwise distance
(NormDist), we divide all entries of the distance matrix by the mean distance, take the
square root of each entry before taking the summation, and divide the total by n2, which is
the number of entries in the distance matrix. Taking the square root of each distance entry
ensures that NormDist does not always equal to 1.

The optimal average pairwise distance is (k−1)/k. We derive OptDist by taking the square
root of the optimal average distance between data points from different clusters, multiplying
it by the number of non-zero entries in an optimal distance matrix, and dividing it by n2.
Thus we have:

OptDist =

(
n
k

)2 · (k2 − k) ·
√

k
k−1

n2

=

√
k − 1

k

We then apply a Gaussian function centered around the optimal distance to compute the
final score. Since we know that a perfectly scattered set of data points (that should result
in a low struct score) has an average normalized pairwise distance of n/(n − 1), we set σ

such that
√

k
k−1

−
√

n
n−1

represents 3 standard deviations from the optimal score.

Loss Function Using Modified MMC

Instead of a hard constraint on the distance between dissimilar points, we implement a
modified version of MMC by imposing a soft constraint in the following loss function:

L = λ1

∑
(xi,xj)∈S

||xi − xj||2A − λ2

∑
(xi,xj)∈D

||xi − xj||A − λ3

∑
xc∈C

struct(A1/2xc, k)

We normalize the sums of distances by setting λ1 =
1
|S| and λ2 =

1
|D| , and set λ3 to be propor-

tional to the squared number of dimensions (d2), the number of classes (k) and subclusters
per class (s) to scale with the data complexity. Thus we have the derivative with respect to
A as follows:

∂L
∂A

=
1

|S|
∑

(xi,xj)∈S

(xi − xj)(xi − xj)
T − 1

|D|
∑

(xi,xj)∈D

(xi − xj)(xi − xj)
T

2
√
(xi − xj)TA(xi − xj)

− d2ks · ∂ struct
∂A
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Differentiating struct

Since NormDist is the only part of struct that is dependent on A, we see that:

∂ struct

∂A
= exp

(
−(NormDist−OptDist)2

σ2

)
· −2(NormDist−OptDist)

σ2
·

∂

∂A

(∑n
i,j

√
1
µ
·Di,j

n2

)

where

∂

∂A

(∑n
i,j

√
1
µ
·Di,j

n2

)
=

∂

∂A

(∑n
i,j

√
Di,j√∑n

i,j Di,j

)

=

(
n∑
i,j

(xi − xj)(xi − xj)
T

4(Di,j)3/2
·

√√√√ n∑
i,j

Di,j−

n∑
i,j

√
Di,j ·

∑n
i,j

(xi−xj)(xi−xj)
T

2Di,j

2
√∑n

i,j Di,j

)
· 1∑n

i,j Di,j

With the derivative of the SPML loss function with respect to A, we perform stochastic
gradient descent on A, while projecting A onto the set of positive semi-definite matrices in
each iteration to enforce the hard constraint of A ⪰ 0.

4. Experiments

We created two sets of input data in 2 dimensions to compare the visual effects of data
transformation via MMC versus SPML. The first set of data consists of 3 labeled classes and
2 subclusters in each class, while the second set has 3 classes and 3 subclusters per class.
Using the same SPML algorithm for all experiments, we simulate MMC by setting λ3 to
a low value and deactivating the struct loss function. We see that MMC collapses each
labeled clusters into one-dimensional clusters on a line, while SPML brings the transformed
data closer together but retains the separation among subclusters.
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5. Conclusion

The results show that it is possible to append a differentiable function that retains the
underlying structure (defined as existence of a specified number of subclusters) in the form
of the proposed struct function. However, the underlying MMC classifier fails to separate
the different classes distinctly, such that the error rate for any test data in the domain could
still be significant. Future extensions could include using other metric learning methods
(such as LMNN) as the basis of SPML.
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